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use, and is designed to minimize the amount of information the analyst has
t, enter into the system. The application functions implemented are built

around a set of ten (10) databases which gre directly accessible by the
analysts. The functions include a number of numerical and graphical
applications. System software that is part of the current SABERS imple-
mentation includes a data base management system (DBMS), a user interface,
and a graphics package. Goals reached in the DBMS development include the
ideal that the application programer's software interface to the SABERS
DBMS should be at a high enough level such that the programner can easily
describe to the DBMS the information content of his data base, easily
create the data base, and then easily access the information in the data

base. Furthermore, powerful data base search and retrieval capabilities
are part of the DBMS. Data base management applications provide a
generalized capability for examining, updating, adding to or deleting
information contained in the data bases. Goals realized by the user inter
face subsystem include the ideal that the application programmer's soft-
ware interface to the SABERS user's terminal is to be at a high enough
level that the programmer does not have to concern himself with the idio-

syncrasies of the terminal. It should be easy for the programmer to
describe to this interface the format of the display to be presented to
the user. It should be easy for the interface to present the display to
the user and to receive inputs from him. Finally, it should be easy for
the programmer to access the inputs. The primary goal of the graphics

package which is realized in SABERS is the ideal that an application
programmer should be able to describe a picture to the graphics package
using data values he understands. The graphics package performs all the
necessary transformations to map a picture from the user's coordinate
system into the terminal's coordinate system. The graphics package is
also as terminal-independent as possible. A major part of the SABERS
effort was the development of software for the Sperry-Univac 1652 terminal
This development involved designing and implementing code within the 1652
to interface it with the SABERS computer system (the VAX 11/780) as well
as designing and implementing the code to control the terminal.
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1. INTRODUCTION

This report contains the final summary of the work accomplished under

Contract F30602-78-C-0078, entitled the "Stand-Alone ADIC Binary Resource

System", referred to as SABERS. This report is in compliance with Data Item

007 of contract Line Item 0002 of this contract.

The total documentation of the accomplishments realized in the

performance of the SABERS contract is being provided in two separate

documents:

o This final report, which provides:

1. The description of the design objectives of the software and of

the numerical algorithms (the body of the report).

2. The information required by the users to employ the functional

tools and to maintain the software (the User Manuals contained

in Appendices A-F).

o The computer program documentation, which describes:

1. The particulars of the routines and subroutines.

2. The schema of each of the data bases.

1.1 BACKGROUND

The purpose of the SABERS effort was to develop a set of tools to

demonstrate Improvements to the Aerospace Defense Command (ADCOM) intelligence

analyst at the ADCOM Intelligence Center (ADIC). SABERS requirements included

the ability to review past and current events using a computerized data base,
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mathematical analysis of space phenomena, graphical presentation of the

results of the analysis, and uniform and efficient user interaction.

Additional constraints were portability, terminal independence, structured

programming, and documentation.

SABERS uses existing software, where possible. In addition, the newly

developed software is portable within the I&W community (AN/GYQ-21(V)

environment). The software was developed on the Digital Equipment Corporation

(DEC) VAX 11/780 computer in compatibility mode. Compatibility mode emulates

the DEC PDP 11/70 minicomputer and the RSX-11M operating system.

Terminal independence is accomplished in SABERS through the existence of

interface utilities which translate between software and hardware protocol.

This mechanism allows uniform software coding for input and output at the

application level, and defers terminal considerations to the interface

software.

SABERS software is designed to be modular. Although the programming

languages are FORTRAN and assembler, the code produced is as structured as

possible. Documentation is provided at the program level in the program

listings, at the system level in the computer program documentation and at the

user level in this report.

1.2 POTENTIAL USERS OF SABERS

SABERS documentation addresses three classes of users, the Space and

Missile Analyst (SMA), the application programmer, and the program maintainer.

The SMA is the ADIC analyst using the end product to research past events and

to analyze present situations. The application programmer is the designer and

coder of new applications to be included in SABERS. The program maintainer is

the systems programmer modifying and updating the existing SABERS code.

? I
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The knowledge requirements of each user are distinct. The SMA must know

how to cause SABERS to execute its applications, and how to interact with the

application routines. The application programmer must know what the existing

software accomplishes, and how to call the subroutines and functions he needs.

The program maintainer must know how the routines perform their functions and

how modification will affect the other software.

1.3 SUM4ARY OF THE FUNCTIONAL AREAS

The result of the SABERS contract is a complementary structure of

routines in six functional • areas: applications, map drawing, user

interaction, graphics, data base management, and terminal control. The

software developed in each of these areas is designed to interact with and

support all of the other areas. This complementary structure provides a

testbed for the SMA to evaluate the effectiveness of computer aided research

and analysis. In providing this service, the complementary structure

functions as a preliminary system design; therefore, it is referred to as the

SABERS system throughout the documentation.

Each of the six functional areas of the SABERS system is designed to

provide capabilities which may be easily modified and expanded. With the

exception of the applications and map drawing functional areas, the collection

of software composing a functional area may be extracted as a unit from the

complementary structure and integrated within some different software

structure. The software composing each functional area provides a basis for

the corresponding unit which is to be implemented in an operational SKA

system.

1.3.1 Applications

SABERS applications software is composed of routines that are developed

to solve problems of interest to the SMA. The problems are related to data

organized in the following areas:
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o sumary information about all current and historical launch events

o description of characteristics and capabilities of all launch vehicles

o description of characteristics and capabilities of all launch pads

* description of characteristics and capabilities of Blue tracking radar

systems

* description of characteristics and capabilities of Blue spaceborne

systems

* description of the status of all objects in space

* description of characteristics and capabilities of Red support facilities

* collection of orbital element sets collected by Blue radar sensors

o collection of IR values collected by Blue IR sensors

9 collection of polynomial coefficients reported by Blue IR sensors

The problems include reviewing and updating the data, performing analysis

on the data to compute the parameters of space phenomena (such as the time and

location of a space launch), and presenting the data and analytic results in a

graphic format (such as the location of Red support facilities and the ground

trace of an orbiting payload).

The application routines act as executive routines. These routines make

calls to the routines in the remaining functional areas to draw maps, request

data from the SABERS data bases, interact with the SMA, and plot graphical

outputs.
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1.3.2 Map Drawing

The map drawing routines provide the computation necessary to draw the

different map projections required as background for some application plots.

The routines rely upon the data base routines to access the map data and upon

the graphics routines to plot the maps.

1.3.3 User Interaction

The SMA interacts with the applications through the Terminal Independent

Transaction Processor (TITP). TITP presents a form to the analyst with the

names of the data renuired and possible default values. Using the screen

editing capabilities of TITP, the SMA enters the desired values and sends the

data to the application. TITP performs error checking before sending the

information back to the application.

The user interaction routines allow the application programmer to

describe the format of an entire screen image; that is, to describe the

location of the fields within the screen, the data types of each field and the

legal values of each field. TITP also allows the application to address,

modify, and read the fields of a screen image by name.

1.3.4 Graphics

Applications cause graphic output to be produced by calling routines in

the Terminal Independent Graphics Processor (TIGP). TIGP is a direct

implementation of the ACH-SIGGRAPH Core proposed graphic system standard.

1.3.5 Data Base Management

Applications manipulate the data through the SABERS Data Base Management

System (DBMS). The data is organized into data bases managed by the DBMS.

These data bases are easily defined and created by the application programmer
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using the provided data description language. DBMS provides capabilities to

add, update, and delete information within the data bases. DBMS supports

complex assertions on multiple key fields in performing data base searches.

The SABERS DBMS is developed using DEC RMS-11, capable of searching an

indexed sequential file based on a single key. The SABERS implementation

includes a FORTRAN interface to RMS-11, complex multi-key queries, multiple

indexed sequential files and multi-user operations.

1.3.6 Terminal Control

The terminal identified as the primary analyst terminal is the Sperry-

Univac 1652 (S-U 1652) terminal. The first known interface between the S-U

1652 and the VAX was developed for SABERS using the DZ11-A asynchronous

multiplexer for EIA RS-232 terminals, making the S-U 1652 look like any

teletype device to the VAX, and allowing the use of the DEC supplied device

driver for communication.

In addition to supporting the communication protocol, the developed

software supports the programming of the variable function "soft keys." The

soft key is programmed with a sequence of characters, which are transmitted to

the VAX for interpretation whenever the analyst presses the soft key.

Software is also provided to download predefined soft key definitions from the

VAX.

1.4 SUMMARY OF THE DOCUMENT

The organization of this report is based upon the organization of SABERS.

The documentation of each functional area is provided in an appendix which may

be extracted from the report at the same time the software unit is extracted

* , from the SABERS system. The information appropriate for each type of user is

provided in the appendix for the functional area.

1-6
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The remainder of this report is divided into 2 sections, 6 appendices,

and one attachment:

" Section 2 describes the software architecture. It describes the

interaction required by the functional areas in the complementary

structure.

" Section 3 describes the mathematical algorithms used in the SABERS

applications.

" Appendix A is the Space and Missile Analyst User Manual, describing the

operation of the SABERS system and the user's interaction with the

applications in the application functional area.

* Appendix B is the Applications Programmer User Manual and Program

Maintenance Reference Manual for the SABERS map drawing functional area.

* Appendix C is the Applications Programmer User Manual and Program

Maintenance Reference Manual for the Terminal Independent Transaction

Processor (TITP), the SABERS user interaction functional area.

* Appendix D is the Applications Programmer User Manual and Program

Maintenance Reference Manual for the Terminal Independent Graphics

Processor (TIGP), the SABERS graphics functional area.

* Appendix E is the Applications Programmer User Manual and Program

Maintenance Reference Manual for the Data Base Management System (DBMS),

the SABERS data base management functional area.

* Appendix F is the Program Maintenance Reference Manual for the Sperry-

Univac 1652 terminal, the SABERS terminal control functional area.
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* Attachment 1 is a copy of the FLECS User Manual. This is provided for

application programmers and program maintainers who may wish to write new

applications in FLECS, or who may need to read the source code of SABERS.
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2. SABERS SOFTWARE ARCHITECTURE

This section describes the method of interaction between the functional

units composing the SABERS system. Section 2.1 presents the system overview.

Section 2.2 discusses the interprocess communication mechanism, and Section

2.3 discusses the use of data bases and data files.

2.1 SABERS SYSTEM OVERVIEW

The process image size under the RSX-11 operating system is 32k words.

Since the total storage requirements of all the SABERS software is much

greater than this limit, the software is modularized Into several independent

utility processes which operate concurrently with the application processes in

support of the applications. These utility processes communicate with the

application processes through the use of the Macro-l1 Assembler interface

described in Section 2.2.

Two of these utility processes coordinate the multi-user access to the

SABERS data bases. These utilities are the Data Base Manager (DEM) and the

Memory Management Service (MMS). The DBM processes the data base access

requests, and the MMS manages the tables necessary for DBM to work. These two

utilities are invoked once to support all SABERS users, and their resources

are shared among all applications. These utilities together form the Data

Base Management System (DBMS).

The remaining two utilities are the Terminal Independent Transaction

Processor (TITP) and the Terminal Independent Graphics Processor (TIGP). A

unique local copy of each utility is invoked for each user. The local copy

includes the Device Manager (DM) appropriate for the user's terminal. The DN

is a Macro-11 Assembler interface for the type of terminal on which the user

is logged in.
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The SABERS account is maintained on the computer in the form of a

directory tree. The roet of the tree is the SABERS default directory. This

is the directory in which the DBM and lMS utilities are initiated. A

subdirectory (or branch) off the SABERS root is maintained for each recognized

SABERS user. The user initiates the execution of applications routines from

his subdirectory. The local copies of the user's TITP and TIGP utilities are

also initiated in this subdirectory.

The user's SABERS environment is established at the time the user

"logs-on" to the system (the log-on procedure is described in Appendix A, the

Space and Missiles Analyst User Manual). If DBM and MMS are not currently

running, they are initiated in the SABERS root directory as detached

(ownerless) shareable processes. After the user is verified to SABERS through

the use of a system password, the correct default user subdirectory is

established. The versions of TITP and TIGP with the DH for the user's

terminal type are copied from the SABERS root directory to the user's default

subdirectory and invoked. SABERS applications may then be initiated by the

user. The requested application is copied from the SABERS root directory to

the user's default subdirectory and initiated. This guarantees that the

application process is local and unique to the user.

An application process expires as soon as its task is completed. The

local copy of the application is deleted from the user's default subdirectory

to prevent the buildup of files in the user's area. The local copies of the

TITP and TIGP processes expire and are deleted when the user logs off from the

system. The DBMS utilities (DSM and MMS) are ownerless, and are halted by

SABERS when the number of SABERS users reaches zero. Thus the first SABERS

user may log off without affecting any other user.

The system environment for three users is pictured in Figure 2-1. In

4 this figure,
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Figure 2-1 The Current SABERS System Organization
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o solid rectangles are independent processes

o processes enclosed in dashed boxes are operating under the user's
default subdirectory

o DON and MMS are operating under the SABERS root directory

o DM is a terminal specific module required to interface the utility to

the user's terminal

o arrows show the lines of communication.

2.2 THE INTERPROCESS COMMUNICATION MECHANISM

The utility processes communicate with an application process through a

Macro-11 Assembler interface. This interface makes use of the system service

message sending capabilities and the global event flag capabilities of the

RSX-11M operating system.

The interface modules are part of the application processes, and are

constructed to make the communication mechanism transparent to the application

programmer. The application program includes calls to the utilities just as

if the utilities were physically part of the application process. The

interface intercepts these subroutines calls and transforms them into messages

directed to the appropriate utility process. The interface copies the

parameters of the subroutine call into a message buffer and sends the message

buffer in 13-word packets to the utility process, using the Send Data System

Service. After the message is sent, the application process "hibernates"

(takes up no system resources).

*The operating system delivers the message to the utility by generating an

Asynchronous System Trap which awakens the hibernating utility. (Note that

placing inactive processes in a state of hibernation allows the operating

system to manage the active executing processes more efficiently). The

incoming message is decoded by the interface into a standard FORTRAN call

which is then executed. Thus, the communication interface is also transparent
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to the utility programmer. When the utility is finished executing, the

results are made available to the calling application through the transmission

of a message through the operating system.

One further refinement is required in interfacing with the DON because ef

its global nature. Since requests for data base operations may be made by

several applications, a synchronization mechanism to insure security of access

is provided by the global event flag dapability of the operating system. The

application interface waits until the global flag shows that the DN is

available, sets it to show the DBM is not available, and sends the message.

The application interface resets the global flag after receiving the data

transfer from the DBM.

2.3 DATA BASES AND DATA FILES

Information necessary for the operation of SABERS is stored in data bases

and data files. Global information available to all users is stored in the

SABERS root directory. Global data bases contain the map data (coastlines and

political boundaries) and the data organized to support the applications

developed to solve problems of interest to the SMA (as presented in Section

1.3). Any changes to these global data bases affects all other SABERS users.

Local Information, which is not accessible to any other SABERS users, is

maintained in the individual userts default subdirectory. In addition to any

local data base required by applications, local data bases exist to store the

map plotting parameters, the current launch event identification number, and

the last record reviewed. Local data files are used by the local copy of TIGP

to store retained segments, and by the local copy of TITP to store screen

display formats and screen responses.

Data bases and data files established and maintained by the utilities are

transparent to the user and the application programer. The information

stored is used to perform calculations, to provide default responses, to aid
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graphics, to format and display transaction screens, and to check user

responses.

2.4 STRUCTURED PROGRAMItNG

To support structured programming in a FORTRAN environment, the FORTRAN

Language Extended Control Systems (FLECS) preprocessor has been employed where

feasible. Such SABERS facilities as TIGP, TITP, the map drawing routines, the

Data Base Management System, and some applications, have been programmed using

FLECS. A copy of the FLECS User's Manual is included with this report.

FLECS expands the FORTRAN lan&-age by making the control structures

recommended by modern programmi- practices available to the FORTRAN

programmer. These structures ,include IF, UNLESS, WHEN . . . ELSE,

CONDITIONAL, SELECT, DO, WHILE, R ..A, WHILE, UNTIL, and REPEAT UNTIL. In

addition, editorial features, such as iadenting, are provided to improve the

appearance and readability of prin0ed programs.

The FLECS preprocessor accepts programs which use these conventions and

outputs code which conforms to FORTRAN 66 standards for compilation in a

production compiler. FLECS was made available without charge to this contract

and is available without charge to SABERS as implemented on the AN/GYQ-21(V).
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3. SABERS APPLICATION ALGORITHMS

This section describes the mathematical algorithms developed for SABERS.

The time algorithms presented in Section 3.1 and the coordinate systems

discussed in Section 3.2 are used in almost all of the SABERS applications.

Although the calculation o: a satellite ground trace is important in many of

the applications, the algorithms presented in Section 3.3 are directly used in

the OVERLAY GROUND TRACE and OVERLAY TIME MARKS ON GROUND TRACE applications.

The solution of the radar related problem discussed in Section 3.4 are the

basis for the RADARS VS. ORBIT applications. The algorithms developed in

Section 3.5 for the photo reconnaissance problems are used in the SATELLITE

RECONNAISSANCE applications. The equations presented in Section 3.6 describe

the algorithm used in the GENERATE THREAT WINDOWS application. The equations

used to generate and plot points on the different map backgrounds for the

application outputs are presented in Section 3.7.

3.1 TIME ALGORITHMS

Time is represented in SABERS by two values, the calendar day and the

clock time since midnight. The user enters and receives the calendar day as

the Gregorian date (year, month and day), or, alternatively, as (year, day

number), in which the month and day information have been combined into the

day number. The clock time is presented and received by the user as mean

solar time (hour, minute, second) in 24-hour format.

The algorithms expect the calendar day to be encoded as a Julian date

relative to January 0, 1900 at midnight, and the clock time to be the

fractional part of the day since midnight. The benefits derived are simple

time difference calculations, and the ability to express the exact time In one

value (the complete Julian day Julian date + fractional day).
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3.1.1 Julian to Gregorian Date Conversion

The conversion between the user representations of time and the algorithm

representations of time are based upon two algorithms presented by Henry F.

Fliegel and Thomas C. Van Flandern in the Letters to the Editor section, page

657, of reference [4]. The algorithms were presented as a FORTUN arithmetic

statement function and as a FORTRAN subroutine.

3.1.1.1 Gregorian to Julian Date Conversion

The Julian date arithmetic statement function as presented by the authors

returns an integer Julian date at noon valid for any Gregorian date producing

a Julian date greater than zero. The algorithm makes use of the truncation

feature of integer arithmetic in FORTRAN.

JD (I, J, K) = K - 32075 + 1461 * (I + 4800 + (J - 14) / 12)/ 4
+ 367 * (J - 2 - (J - 14) / 12 * 12) / 12
-3 M (I + 4900 + (W - 14) / 12 / 100) 4

where I = year, J = month (number from 1 to 12) and K = day of month.

This algorithm, when evaluated for December 31, 1899, yields JD

2415020. This implies that the Julian date of January 0, 1900 at midnight is

2415020.5. Changing the function to a real-valued function, and recognizing

that the time interval between two Julian dates is the difference of the two

Julian dates, the SABERS algorithm to convert from (year, month, day) to

Julian date is:

DAY (IYEAR, MONTH, IDAY) = IDAY - 32075
+ 1461 (IYEAR + 4800 + (MONTH -14) / 12) / 4
+ 367' (MONTH - 2 - (MONTH -14)/ 12 12) / 12 (3-1)
- 3 * ((IYEAR + 4900 + (MONTH - 14) 1 12 / 100) / 4
- 2515020.5
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3.1.1.2 Julian to Gregorian Day Number Conversion

A closed form expression may be derived from the FORTRAN expression (3-1)

to convert from (year, day number) to Julian date. Letting JUL be the real-

valued Jullan date required, and DNUH be the day number, we want

JUL = DNUM + DAY (IYEAR - 1, 12, 31)

Substituting IYEAR = IYEAR - 1, MONTH = 12 and IDAY = 31 in (3-1), we find

JUL = DNUM + 365 ' IYEAR + (IYEAR - 1) / 4
-3' *(IYEAR -1) / 100 + 1) / 4

- 693960.5

again making use of the integer truncation feature of FORTRAN.

3.1.1.3 Julian to Gregorian Date Conversion

The second algorithm presented by the authors converts from the Julian

date JD to the year, month, and day. Written in the form of a FORTRAN

subroutine, it also makes use of the integer truncation feature of FORTRAN.

-. -SUBROUTINE DATE (JD, IYEAR, MONTH, IDAY)
L = JD + 68569
N = 4 0 L / 146097
L = L - (146097 * N + 3) / 4
I = 4000 * (L + 1) / 1461001
L = L - 1461 * I / 4 + 31
J = 80 * L / 2447
IDA= L - 2447 * J / 80
L J/ 11
MONTH =J 2 - 12 0 L
IYEAR = 100 * (N - 49) + I L
RETURN

* .END
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The SABERS subroutine differs only in replacing the input integer Julian

date JD with a real Julian Date D and adding the Julian date of January 0,

1900 at midnight. The first line of the subroutine is thus replaced by

SUBROUTINE DATE (D, IYEAR, MONTH, IDAY)
JD = D + 2415020.5

Of course, the Gregorian date may be expressed as (year, day number) by

solving for the day number DNUM with (2 - 1) by

DNUM = DAY (IYEAR, MONTH, DAY) - DAY (IYEAR - 1, 12, 31)

3.1.2 Mean Solar Time-Fractional Day Conversion

The conversion between mean solar time and fractional day since midnight

is straightforward. Let F = fractional day, H = hour (24-hour clock), M =

minute and S = second, then

F = (H * 3600 + M ' 60 + S) / 86400

and

H = [24 F)
M = (1440 * F - 60 * H]
S = 86400 * F - 60 * H - 3600 M M

where [X] means the greatest integer function of X.

3.2 COORDINATE SYSTEMS

There are three coordinate systems used to describe a point's location.

These are the earth-centered inertial (ECI), the geocentric, and the local

topographic (ENU) coordinate system. An orbital element set is used to define

a satellite's position, and will also be described in this section.
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3.2.1 Earth-Centered Inertial Coordinate System

The earth-centered inertial (ECI) coordinate system has its origin at the

center of the earth. The principal axis points toward the vernal equinox

(denoted by y ). The x-y plane is in the earth's equatorial plane, and the z

axis points to the north pole, completing the right hand system (See Figure

3-1).

The ECI coordinate system is the reference system for the other systems

in this section. This is a result of the characteristic of the ECI coordinate

system that it does not change in its orientation in the time scales the

SABERS algorithms deal with.

3.2.2 Geocentric Coordinate System

The geocentric coordinate system is a rotating frame of reference. The

origin of the system is the center of the earth. The coordinates of a point

are given as ( A, * , h), where A is the longitude, 4 is the geodetic

latitude, and h is the altitude of the point above the reference ellipsoid.

As shown in Figure 3-1, the longitude is the angular deviation, measured at

the equator, of the meridian passing through the point from the Prime Meridian

(passing through Greenwich, England), -1800 < A < 1800. By convention, a

positive longitude indicates that the point is to the east of Greenwich.

The earth is modeled as an ellipsoid generated by rotating an ellipse

about the z axis. As shown in Figure 3-2, the line from a point P

perpendicular to the reference ellipsoid at A will intersect the equatorial

plane at B. The acute angle of intersection at B is defined as the geodetic

latitude . The geocentric latitude is defined as the angle between A

and the equatorial plane measured at the center of the earth. These angles

are related by
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Figure 3-1 Earth-Centered Inertial and Geocentric Coordinate Systems
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Figure 3-2 Ellipsoid Earth model
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tann 2 00 < 9<go, o <f <90
(1 - f2)

1

The distance along the perpendicular between P and A is defined as the

altitude above the reference ellipsoid h.

3.2.2.1 Hour Angle

The geocentric coordinate system described above is a rotating system.

The angular deviation of any point from the vernal equinox at time t is

defined as the hour angle 0. As shown in Figure 3-1, 0 = e + X , where eG is

the hour angle of the Prime Meridian. As reported in reference [3], pages

20-21, the Greenwich hour angle may be closely approximated by

eG a G + At dt

t
0

where

99.69098330 + 36000.76890 Tu + 0.00038708 T2
G 0 U

with

T =Julian date at midnight relative to January 0, 1900u 36525

At fractional days since midnight
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and

3d84297 revolutions/year

=360.9856473 degrees/day

The hour angle E), 00 < e < 3600, defines the linkage between the rotating

geocentric and non-rotating ECI coordinate systems.

3.2.2.2 Geocentric to ECI Transformation

The transformation from geocentric coordinates to ECI coordinates is

taken directly from Transformation 4, pages 399-400, in reference (3] (See

Figure 3-2).

X, *, h, e G -> X. y, z

*tan- 1 U(1 - f) 2 tan)

a2 [(1- (2f - f 2 )

c 1 - (2f f) o2  *0 '

6= + sin- 1 sin ~-0

X = Rt 0os 6 COS 6

y =t RCOS 6 sin 6

z = R sin 8

where
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ae : semi-major axis of the earth

1 1 e.r. (earth radius)

= 6378.16 km.

3.2.2.3 ECI to Geocentric Transformation

The transformation from ECI to geocentric coordinates is taken directly

from Transformation 3, pages 398-399, in reference (3) (See Figure 3-2).

x, y, z, o ->

-x2 2 2

a = tan -1 ( )

00
ai - eG -180 < X < 180*

=tan- 1  z -900 < 6< 90

2

Starting with the estimate 6, the following equations are executed in an

- - iterative manner until * is within the required tolerance.

i2

R a 1 - (2f - f2)
c e~l - (2f - f 2 ) Cos2

* tan [ton f2

-f)
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h * _2 sin2  '

S 5 6- sln - 1  Bin ([ hI

3.2.3 Local Topocentric Coordinate System

The local topocentric coordinate system used by the SABERS algorithms is

defined by pointing the principal e-axis towards local east, pointing the n-

axis towards local north, and completing the right hand system by pointing the

u-axis up (See Figure 3-3).

The transformation from ECI coordinates to local topocentric coordinates

is given as follows:

.where is the origin of the local topocentric system in ECI coordinates

, and G is the rotation matrix (see page 319 in reference [5J and page 3-5 in

reference [8J ),

-sin e cosO 0
I I

G -sin cos e -Sir sine cos

Ccos os COs sin 8  Sin

where * is the geocentric latitude of the origin and 8 is the hour angle of
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Figure 3-3 Local Topocentric Coordinate System
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the origin. At time t, the location of the origin expressed in ECI

coordinates determines the hour angle and the coordinates of the origin in the

geocentric coordinate system via the algorithms presented in Sections 3.2.2.1,

3.2.2.2, and 3.2.2.3.

3.2.4 Orbital Element Set

The development presented in this section is due to Dr. Ranjan V.

Sonalkar, as reported in reference [8J, pages 3-1 to 3-21.

3.2.4.1 Description of the Orbital Elements

SABERS algorithms receive satellite orbit information in the set

C TE, n, e. i. wo ., n. 2, T ). The epoch time, TE, is the time for which

the orbital element set has been observed. As shown in Figure 3-4, the right

ascension of the ascending node, Q, is an angle measured in the earth's

equatorial plane. It is defined by the vernal equinox and the ascending node

(the intersection of the orbit plane and the equatorial plane for which the

satellite is ascending from the southern hemisphere to the northern

hemisphere). The eccentricity of the orbit, e, is assumed to be 0 < e < 1,

defining an elliptic orbit with the center of the earth at one focus. The

inclination, i, is the angle between the equatorial plane and the orbit plane

at the ascending node. The argument of perigee, w, is the angle measured in

the plane of the orbit defined by the ascending node and the periapsis (the

point of the satellite's closest approach to the center of the earth). The

mean anomaly, M, indicates the satellite's position in its orbit. The mean

motion, n, measured in revolutions per day, contains information about the

period of the orbit and the semi-major axis of the orbit ellipse. The

quantities and are the first and second time derivatives of the mean

motion, respectively.
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Figure 3-4 Orbital Element Set

3-14



3.2.4.2 Calculation of Satellite Position

Given a satellite orbital element set, the algorithm to calculate the

satellite's ECI position and velocity vectors, X and t, for A t from epoch

time, TE, begins by calculating the value of the semi-major axis (in earth

radii) at epoch.

a 3 (1 61 68 2)
n

where

J (1- sin 2 i)
2 22 22

3 - e2)2

= gravitational constant of the earth

= 398600.5 km3/sec 2

S2 = second zonal harmonic coefficient of the geopotential function

= 0.00108248

Next, the secular perturbations are introduced.
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O= Q _ ff12 n Cos At
o a2 (1 -2)2 At

3J 2 n (2- 5in 2 1)

0 W2(1 2)2 At

where 1o and w are the unperturbed values of the orbited element set, and

9 and w are the perturbed values. Then the eccentric anomaly, E, is solved

for, using the Newton-Raphson iteration method for Kepler's equation,

M = E - e sin E

for

M:=o +n At + At 2

where H° is the mean anomaly at time t : TE and H is the mean anomaly at time

t T E + A t. The following are solved for:

L (true argument of latitude) = 2 tan- 1-e tan T + W

R (range) = a (1 - e cos E)

, (radial component of velocity vector) = - sin E
R
a (10 e 2 )

-. . R4 (transverse component of velocity vector)=

Defining unit vectors U in the radial direction and V perpendicular to
4 4

the radial vector in the direction of the transverse component as
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U K= = cos L sin 0 + sin L cos i cs
-Z)sin L sin i

V = f-sin L sin a + cos L cos cos

-) v~ cos L sin iI
iz

we have

X =R U

U +R# V

3.3 SPACE OBJECT GROUND TRACE

The orbital element set can be used to calculate space object ground

traces. This section presents algorithms for calculating the ground traces of

satellites and ballistic missiles.

3.3.1 Satellite Ground Trace

The satellite ground trace is the locus of points described by the

satellite sub-orbital over a given time period a t = At Given a
i

satellite's position, the satellite sub-orbital is defined as the point of

intersection of the line through the satellite position perpendicular to the

3-17



reference ellipsoid with the ellipsoid. Given a set of A tI from epoch TEt

and the orbital element set, (T a e, i, w M, n, A, A), the set of
Et z'6'

geocentric ground trace points to be plotted may be generated by the methods

of Section 3.2.4.2 followed by the transformation of Section 3.2.2.3 for each

A tt .

Dividing the time span desired into equal time segments is instructive in

that the ground distances drawn indicate the proportion of time each area of

the earth is under surveillance. The set of ground trace points generated

this way do not produce smooth curves for non-circular orbits, however. The

following algorithm generates a set of At such that the ground coverage

distances plotted will be approximately equal in length.

The true anomaly, v, is the central angle from periapsis to the

satellite's position. Obviously, dividing 3600 into N equal true anomaly

angles implies that equal ground distances will be covered on a spherical

earth (See Figure 3-5). However, the expression which will generate the At.1

is in terms of the eccentric anomaly E. The eccentric anomaly is defined as

the angle (measured from the center of the earth) between the periapsis and

the intersection of the circle circumscribing the orbit ellipse with the line

through the satellite perpendicular to the semi-major axis (See Figure 3-6).

The relationship between v and E i3 given on page 39 in reference [2) by

tan = e tan E

and the A t1 is given on page 1 of the same reference by

SE 2 - E 1  E2 - E1
2( 2 -e sin 2 cos 2

At =
n
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Figure 3-6 Definition of Eccentric Anomaly
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The algorithm proceeds as follows:

1. Find the eccentric anomaly of the satellite at the start time by the

method of Section 3.2.4.2, 00 < E < 3600

2. Calculate the corresponding true anomaly as

V :2 tan1U" itanE]

3. Let A v be the increment of true anomaly. Then the table of true

anomalies may be generated as

v =Vo + i. Av , i = 0to N.
i 0

4. The corresponding table of eccentric anomalies is generated as

E= 2 tan-' 1 -e tan- , i= 0 to N

5. Finally, the tables of 4 t i may be calculated as

Ei - E E- E Ei -E

2 2 e sin 2 cos 2
A ti =n

for i = 1 to N.

3.3.2 Ballistic Missile Ground Trace

The ground trace of a ballistic missile defined by (TE, c2 e, i,)

launched at location L ( A , , h) requires the algorithms described in this

section. If the predicted point of impact is known (say from TSATS), then the
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beginning and end points are known. If the predicted point of impact is not

known, then it must be estimated as follows.

As explained in reference 1] on pages 279 - 297, the orbit of a

ballistic missile is an ellipse in its non-powered phase. Due to propulsion

forces and atmospheric and gravitational effects, this is not true before

burnout and after reentry (See Figure 3-7). However, the free-flight

trajectory Is symmetrical, and half of the free-flight range angle, ' , lies on

each side of the semi-major axis. Since no time of burnout and time of

reentry information is available, the assumption is made that the complete

ballistic path is a part of an ellipse symmetric about the semi-major axis.

The true anomaly, V is calculated to the point of launch. The trues 
'

anomaly,. VT, is calculated to the predicted point of impact (if known), or to

be 3600 - v. otherwise. Values for the semi-major axis and mean motion are

calculated, appropriate A ti are calculated, and then the method of Section

3.2.4.2 followed by the transformation of Section 3.2.2.3 is used to generate

the ground trace points.

The launch point true anomaly v is calculated as follows. Let LP be

the vector in ECI coordinates of the launch point. LP is calculated by the

transformation of Section 3.2.2.2. Let P be the vector in ECI coordinates of

periapsis. As defined on page 77 in reference [3),

~coswtucos fl- sin S1 sin w co03
P = cos w sin 0+ sin S cosw cos
4 sin w sin i

Then,
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The equations on page 20, r = a (1 - e2) and page 187,

Cos V= e - cos E 1- os

e cos E - i, in reference [1], may be solved for the semi-major axis a

and the eccentric anomaly at the launch point E.-

LP (1 - e Cos V

- e + CO V 5

c eOS +e cos v
E Cos

The ballistic missile element set way be extended to an orbital element set by

letting M = E - e sin E and n = J , where ju is the gravitational
s~~ aa-a,

constant of the earth, and by setting A and - to zero.

Defining A n to be (n, - nt) I (N - I) if the predicted impact point is

known, and to be (3600 - 2v ) I (N - 1) otherwise, the A ti are calculated in
3

the same manner as Section 3.3.1, steps 3 to 5.

3.4 RADAR RELATED PROBLEMS

The radar position (X, *, h) and coverage limits (R, Am. AM, Em. EM) are

stored in the SABERS data base for each radar. The coverage limits are the

range R, minimum and maximum azimuth Am and AM, and the minimum and maximum

elevation, Em and EM. As shown in Figure 3-8, azimuth is measured clockwise

from local north, and elevation is measured from the horizon, positive above
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the horizon and negative below the horizon. The azimuth limits are

00 < A < 3600 and the elevation limits are E 0< E < 900. In practice, E0 is

limited to values greater than five or ten degrees due to refraction effects.

3.14.1 Radar Coverage Plots

Elevation information is lost in graphically representing extents, and

the range information is distorted. This is due to the method chosen to

represent the radar coverages, which is to project points on the radar beam

periphery onto the surface of the earth. The set of points to be plotted is

projected from ECI coordinates by the transformation of Section 3.2.2.3. The

set of ECI points is generated by the following algorithm.

In the local topocentric coordinate system, the unit vector defined by

the azimuth is A |os , for any azimuth A. Using the transformation
u 0

matrix G described in Section 3.2.3, this unit vector in the ECI coordinate

system is X = ( . The point on the radar beam at range R + A R

for any azimuth in ECI coordinates is then P = L + (R + A R) X, where L is
4 4 4 4

the radar site position in ECI coordinates obtained by the transformation of

Section 3.2.2.2.

In order to show the effect of the curvature of the earth on the radar

coverage picture, only 3/5 of the points to be plotted are calculated at each

A A with range R. For A = Am and A = AM, 1/5 of the points to be plotted are

calculated by letting A R vary from -R to 0.

3.4.2 Radar Coverage of a Satellite

Given a particular geometry, it is straightforward to determine if a

satellite is under radar coverage by comparing the actual range, azimuth, and

elevation to the satellite with the radar limits. As shown in Figure 3-9, the
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azimuth and elevation angles are defined in the local topocentric coordinate

system by

E1 = sin- (6u) -900 < El < 900

Az = tan- (6-n 00 < Az < 3600

where 6n is the direction cosine vector from the radar site to the satellite
6u

position.

In ECI coordinates, the range p to the satellite from the radar is

P:J . [(XS XR)2 +(Y Y)2 *(ZS ZR) 2

where X is the satellite position calculated by the method of Section4S

3.2.4.2 and X is the radar position calculated by the transformation of

xR X - X

Section 3.2.2.2. The direction cosine vector is then 6 -

coordinates. By the transformation matrix G of Section 3.2.3, we may then

calculate the local topocentric direction cosine vector as n = G )yI,

and calculate El and Az.

To graphically represent the radar coverage for which the satellite is

visible, the method of Section 3.4.1 may be used. The azimuth angles at

tstart and tend replace the radar limit angles Am and AM.
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3.4.2.1 Time of Coverage Calculations

If the satellite is in coverage at times t i and tj, and out of coverage

at times tt_1 and tJ+1, it is known that the satellite first becomes visible

at some time between ti_ 1 and t t , and passes out of coverage at some time

between t and t These exact times are approximated by t 1 and t so

that the satellite is considered under radar coverage over the larger time

interval. Greater accuracy may be gained by using a smaller time interval.

3.4.2.2 Exceptions to Coverage Checks

Checks for coverage need not be performed for those geometries for which

the ground trace of the satellite is in the opposite hemisphere from the radar

site (see Figure 3-10). No checks need to be performed at all if the

satellite's minimum height above the reference ellipsoid (that is, at

periapsis) is larger than the radar range limit R (see Figure 3-11). This

means there is no check if R < a (I - e) - ae, for an orbit with semi-major
axis a and eccentricity e and earth semi-major axis a.e

3.4.2.3 Pass Through Coverage Check

In the discrete method of Section 3.4.2, it is possible for the satellite

to be reported as out of coverage, when for some time interval inside the time

step size the satellite may have passed through radar coverage (see Figure 3-

12). As implied by the terminology "passed through," this condition may be

checked for by comparing the relations between the actual values and the

limits at the two discrete time points whenever the time step size is much

smaller than the period of the satellite, Tp. If the elevation angles

measured at time tt and tt+ 1 are both less than Em, or both greater than E..

then there has been no pass through. Similarly, if the two measured azimuth

angles are both less than A or greater than A,, there has been no passm
through. Finally, if the ranges measured at time ti and t 1, are both greater

than the range limit, and the satellite has not passed through periapsis, then

there has been no pass through.
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The satellite may pass through radar coverage when the ground trace

crosses from the different hemisphere to the same hemisphere as the radar

site. This means that the check values are calculated for the first and last

times for which the satellite is in the opposite hemisphere.

3.5 PHOTO RECONNAISSANCE PROBLEM

The satellite in orbit may carry a camera mounted in such a position that

a portion of the earth's surface will be under reconnaissance coverage. In

SABERS, the camera aperture is defined by the field of view angle T , Figure

3-13. The camera mounting is defined by two angles: the azimuth (from local

north), Az, and elevation (from down), El, both measured from the axis of the

cone. If the elevation angle is zero, then the cone axis intersects the

ground trace point of the satellite. This follows from the definition of the

satellite sub-orbital in Section 3.3.1.

3.5.1 Photo Recconaissance Plots

Drawing the coverage of the camera requires the solution of the

intersection of the oblique cone with the reference ellipsoid. The algorithm

is developed for two cases: El =0 and El 1 0.

3.5.1.1 Case 1: El = 0

As described in pages 4-424 to 4-425 in reference (6] the intersect.on of

the ECI vector

X =S+ p P, (3-2)

where
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X y is the vector to the point of intersection

S is the position vector of the satellite!4

P slant range

P = 2 is the line of sight vector

4 P3

(see Figure 3-14)

and the reference ellipsoid

2 2 2.. + = 1 (3-3)
a2  b2

e e

yields the two solutions for the slant range:

3-35



o~4

I.
'4
'4

0

4,
0

H
0
U
H
0

C-)I?
4,
~1
0
-.4
Cfl

*
-.4

Cv'

0
.f

4

.0 1*..

F *1

r

F

3-36



P 2fA C (3-4)

where

A 2 ,p 2  ,2

2 S1 P1 
+ 2 S 2 P2  2 S3 P3B z a -

a2  b2
e e

2 +2 S2

C Si * 2 _ 3 1
a2  b
e e

where ae is the semi-major axis of the earth and be is the semi-minor axis of

the earth. The minimum of the two roots is used to ensure that the solution

X is the point in the same hemisphere as the satellite ground trace.

At time t, the satellite position vector 3 is known by the method of

Section 3.2.4.2. As mentioned in Section 3.5, the cone axis is coincident

with the ground trace vector. In the local topocentric coordinate system, the

cone axis direction cosine vector is then (e) . The ECI cone axis

direction cosine vector R is then

R GT(O)0

3-37

:% I .



where G is the transformation matrix defined in Section 3.3. Given any unit

vector U normal to R , the line of sight vector P on the surface of the cone
4

is then defined by

P =Rcos +U sin a
4

where ct: is the angle of the cone measured from the cone axis (see Figure
2

3-15).

Many such vectors U may be generated by considering the local topocentric( /sin A
vectors n cos A centered at the satellite position where the A1

0 0°

constitute a set of azimuth angles from AD = to AN 3600, measured from

north. The set of ECI vectors normal to R is then

sin Ai
U 2 G (c3 Al)\ 0

Since S and P are known, the slant range O may be solved for by the method
4 4

of Section 3.5.1.1, upon which X is known in ECI coordinates. Then X may~->i -4i

be plotted in geocentric coordinates by the transformation of Section 3.2.2.3.

* If P does not intersect the earth, then B2 - 4AC <0 and the roots of the

quadratic equation (3-4) will be complex. In this case, consider the line of

sight vector P
4
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P =R cos B+ U sin 8
4

such that P is tangent to the earth surface. The angle B such that P is
4 4

tangent may be solved for by setting the discriminant B2 - AC 0. Define

the earth ellipsoid equation (3-3) as

2
2 2 2 2 a
x +y +D = ae with D 2

b
e

Then by substituting (3-2), we have

(S + P1) 2 + (S2 + p p2 ) 2 + D (33 + P P3 ) 2  82

or

S2 (p P2 + D P )+P (2 S 1 P 1 
+ 2 3 2 P2

+2D+ 2 2 +DS 2  a2 : 0

S 3 ) + 1 2  3

where S is constant (the satellite position) and

a a!

P =R cosB +.U.sin
4

Letting
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A P 2 2 + D P2

* 1 4P 2  P3

B : 2 S1 P1 
+ 2 S P + 2 D S3 P3

and

C=2  2. +D 2C S S 1 + S 2 + D S 2 ae2
1 2 3 e

we want

B- IAC : 0

That is, we want by substitution of A, B, and C,

ii (38?+S D S P) 2 - 2 2 P C 01 2 2 P1

or

s2 P2 + S 2 .+D2 S 2 P 2 + 35
Si1 2 2 3 3 2 1 S2 P1 P 2 2D5 1 S 3 P 1 P 3 + 3

S2 D S p 3  cp - c P2 - C D P 2  0

Noting that P =R cos8 + U sin B, we find
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P r cos  2 r u cos $sin + u2 sin2 S

P1 P rir i Cos + (rj uj + rj uj) Cos 0 sin ui uj sin 2  •

This means that equation (3-5) becomes, by substitution,

X o0 2 B +Ycos $sin O+Z sin 2 0 = 0 (3-6)

where

*XY 2 
+ 2 2

Vr1 + V2r2 + V3r3 + Vrlr2 + V5rr 3 + V6r2r3

Y 2VlrlU1  + 2V2r2u2 + 2V3r3u3 + V (rlu2 + r2u1)

+ V5(r1u3 + r3u1) + V6 (r2" 3 + r3u2 )

Z = Vu 2 + 2 2 + V Vuu1 1 , 2u 2 + y3u3  Vq1UU 2  V5U1U3  6 2 3' I
2 C

* 2

V3 = D (D 3  C)

V = 2 S1 S2

V 2 DS S
5 1 3

V6 =2 D S2 53

Dividing (3-6) by cos& B , we have a quadratic in tanO
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Z tan2 B + Y tan a + X = 0

or

tan -____+ ___
2Z

No solution for 8 exists if Z 0 or Y2 < UXZ. This will ocour if the R x U

plane does not intersect the earth.

Choosing the larger of the two roots to get positive B, find

003 ~ ta 2  1
cos =(I + tan2 B " a

sin 8 =tan Bcos8,

This gives

P =RcosB .Usin 0
• ->T

where

P ( is the line of sight to the point of tangency: ..>T 2

Therefore,
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A P 2 +p2 +DP 2
T] 1 T 2  T D 3

A-P 2 22D P 3

- 1 PT1 T2  PT3

B:=2 S IP T +2 S 2 P T2 .2 D S 3 PT

and

PB
T -

The resultant X may be plotted in geocentric coordinates by the
4T

transformation of Section 3.2.2.3

3.5.1.2 Case II, El 1 0

-I

Let R be the vector along the cone axis. In the local topocentric

coordinate system,

ei sin El sin Az
R n e =sin El cos AZJ

luJ ~ -cos El
.I

Note that if El 00, R asboe

It is desirable to define two mutually perpendicular vectors

perpendicular to , to form a new coordinate system with R as one axis.

Define:
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and

i j k

4 4 4 +rk
t~~ 1 rl "-' ni0

N -'n o 23r 1
I- xN 1 4

Er , r 2  r 3  2

2 1 2

0-r1 r2 1 + (r3 +r 3 ) 1-r2 r 3 k

4) 44

m noting that if El : 0, then E = E and N : :1) N. Now define

. I~ : Ntc°s 6 .£sin 0$for 0° < $1 <360 °, to provide a rotating system of

i i 1 1- 3r

cone surface rays similar to before.

As before, the vectors may be expressed in ECI coordinates as Ru =ft

' and U =G'U', for the transformation matrix G defined in Section 3.2.3, and we

' may calculate P : 1 oos a . U sin a for the line of sight vector in ECI
c 4 

2oordinates.
At this point, it is convenient to find the U vector such that P is

contained in the plane defined by RS et o. s i simly
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- R cos
S' sink

where E is the angle between R and P defined by

P

Cos F

The point X may then be found by the method of El 0, where the field of view

angle a is replaced by E.

3.5.2 Special Conditions

There are special conditions to be considered when the cone axis does not

intersect the earth. There are no computational problems when the cone axis

does intersect the earth.

3.5.2.1 Determining If the Cone Intersects the Earth

As shown in Figure 3-16, the cone may not intersect the earth or may

envelop the earth. Since the algorithm described in Section 3.5.1.2 will

return all the tangents, only the case of no intersection must be detected

independently.

The cone will not intersect the earth if the angle between the cone axis

and the vector to the center of the earth, 0, is larger than the field of

view angle, a , and the angle to the tangent vector, B, from the ray to the

* center of the earth, i.e. 0 > a + .

Let R be the cone axis vector in ECI coordinates, and S be the satellite
4

position derived by the method of Section 3.2.4.2. Let P be the vector
3T
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tangent to the earth's surface.

Then

p •.-S

Cos +T 4

and

sin 2

also,

R " -S

4

cos -

There is no intersection if 0 > X + 8 , that is, if

Cos 0 < Cos a Cos -sin c sin a.

3.5.2.2 Removing Excess Points

As shown in Figure 3-17, some of the points of tangency should not be

plotted in case the point of tangency is not in the cone coverage. This is

detected by noting that the angle, 0 , between the targent ray P and the core

axis 1 is larger than the field of view angle a . That is:

ia
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RAESUTN

COVERAGE
AREA

EXCESS EXCESS
REMOVED0 %REMO VED

Figure 3-17 Points of Tangency Not in cone Coverage
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003e < Cos

or

cos a > -

3.5.3 Time of Coverage Calculations

Approximations are performed in calculating the times of coverage of a

point of interest on the ground by the reconnaissance satellite. These

approximations result in the algorithm producing times of coverage that span

the actual times of coverage. At each time step, the points of intersection

may be determined by the method of Section 3.5.2. The figure determined by

these points of intersection is approximated by a circle on the surface of the

earth circumscribing the figure. The center of the circle is the average of

all the points in the figure, and the radius of the circle is taken as the

largest of the great circle distances from the center point to the figure

vertices. The great circle distance formula between two points (X' *11 hl)

and (x2 , 2' h2) is

-1
r ae cos (sin 01 sin 02 + cos 41 cos. 2 cos (l- X2 ))

'

* where a is the semi-major axis of the earth.~e

3.5.3.1 Pass Over Coverage Check

To check against coverage between the discrete time steps, the following

method is used. Let the two figure center points be CP 1  (X19 0I 1h1) and

UP2 - 02' h2 )" Calculate the two radii of coverage r and r2 with the
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great circle distance formula. Let r = max(r 1 , r2). It is necessary to

compare r with the minimum distance from the center point trace to the ground

point of interest, P = (Xp iP, hp).

From spherical trigonometry, (See Figure 3-18),

cos a a sin 1 sin 2 + cos I cos 2 cos (.A - 2 )

cos b z sin sin fP + cos 1Cos p" cos (1 p

cos c sin 2 sin + cos 2 cos f cos (X 2  X)
2 P2 p 2

and

cos a cos a cos b + sin a sin b cos (3-7)

where $ is the included angle between sides a and b. It is desirable to find

0 < Y < 1 such that

c C cos - 1 (cos (Ya) cos b + sin (Y a) sin B cos B)

is minimum.
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Let c * d °s- ( -sin (Y a) coo b coo (Y a) sin b coo0) 0.

Since

d co - 1 (u)y .- (1-u2 /2  Od y

we have

-sin (Y a) con b + cos (Ya) sin b co 8 0

sin ( Ya) cos b z cos (Ya) sin b cos 8

tan (.Ya) tan b cos 1

y tan -I (tan b cos B)
a

I

Let a Y a for 0 < y < 1, and then find

d b cos -  (cos a cos b + sin a sin b cos B)e

3with be  earth semi-major axis. It is not necessary to find 83 explicitly,

since

sin b cos 0 = cos c - cos a con b
sin a

from (3-7). Also, if a sin a = O, let d= be cos- 1 (max (cos b, co c)).

If d < r, then the ground point is considered to be under coverage by the

reconnaissance satellite.
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3.5.3.2 Coverage Time Interval Accuracy

The set of all times such that d < r for time pairs (tii, tt),

(t J tj 1 ) is reported as start, end times (t_1, tj+1 ). This is similar to

the method described in Section 3.4.2.1. However, there is a limit to the

accuracy of this algorithm, due to approximating non-circular figures with

circles. To ensure that the error is on the side of caution, the d calculated
a

in Section 3.5.3.1 is multiplied by e 1 1.0034 as a model correction
be

factor.

3.6 THREAT WINDOW ALGORITHM

The determination of launch windows (times at which a payload may be

launched from a site to intercept a target satellite in its orbit) is based on

LPRE, a launch prediction algorithm described on pages 2-11 to 2-17 in

reference [7].

3.6.1 Existing LPRE Formulation

The empirical formulas provided in the reference are functions of the

target orbital period, T, and the phase angle 4. The phase angle is defined

as the angle at the center of the earth between the target satellite position

and the launch site position at the time, t , when the site is coplanar withi p
the orbit.

Letting t 0 window open time, t window close time and tn nominal

launch time, the following regions have been identified:
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Region 1: 00 < * < 600
0o =p -. 05 Tp

., 600° -t Z tp + T0 p 0p360°  P

tp + .05 Tp 4 2°

tn = > 420

P 00

Region 2: -60 < < 00•0
t- .05T , -4 2° <

p p

0 t 600 + -600 < *< -420
p 360 P

tc  tp + 1800 T
3600 P

t t + .05 T

Region 3: -180 ° < < -600

t t + 60  T
0 p 3600

t + 1800

t +t

0 o4 t =n 2
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Region 4: 60 < < 1800

not viable

3.6.2 Determining Time of Coplanarity

Finding tp, the time of coplanarity, is accomplished in an Iterative

fashion. There will be a maximum of two times of coplanarity in one day, and

a minimum of no times of coplanarity (in case the launch site latitude is

larger than the orbit plane inclination). Therefore, there are at most two

launch windows for a given launch site and orbit plane in one day.

- For launch site (0, f, h) and satellite position S and velocity V, at

current time, t, in seconds since midnight, define the ECI coordinates of the

launch site as

X) Gcos f cos6
y G cos f sin e (3-8)z

G2 sin /

--where 0 is the hour angle of section 3.2.2.1 at t,

a
G 1 h + e

't 1- - (2f - f2 ) si-n2*

a(1
G- (2f -

* ,3-56
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8e :6378.16 km. semi-major axis of the earth

(see page 115 of reference t3]), and denote the orbital plane as

AX + B'Y+C'Z+D' = 0 (3-9)

when

3 x V
[A 8 and D :0

Substituting (3-8) into (3-9), we have

A cosO e B8sir *C 0 (3-10)

for

A A Gcos 80 8 B'G cos 4,and C C G2 sin 4

Solve for the true roots of (3-10) from among the four solutions to

I: _0 ' AC . B A 2 + B2 
-C

2

O= sir.1  -IC I ATA + 2 C
A! + B2
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and for each true root, find t (time since midnight) as

ti d dO

dt
where

eG Greenwich hour angle at midnight
0

and

d6 - earth's rate of rotation

Using t1 as the current time, adjusted values for S and V may be used to
4~ 4

refine the estimate of t until

tk t k+1l

Then the phase angles i for each tp are calculated as

S *L
-1 ->i

where S and L are the ECI positions of the satellite and launch site at

time tI .

3.7 MAP PROJECTIONS

4+ In this section, the formulae required to perform the SABERS map drawing

functions will be presented. These formulae permit the translation of a point
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or series of points on the earth's surface, represented by latitude and

longitude, to X and Y values for plotting on a Cartesian coordinate system.

There are two basic steps in this conversion. First, a scale factor must

be calculated. This value is based on the size of the map display or on a

specified map scale. Once the scale factor has been determined, any number of

points may be translated for display.

The equations below assume a standard Cartesian coordinate output is

required; that is, the origin of the display surface will be in the center,

and X and Y values may be positive or negative. The SABERS display assumes a

coordinate system with the origin at the lower left, and only positive values

of X and Y are acceptable. Therefore, a simple offset value is subtracted

from the equation results to yield the proper SABERS coordinates.

Mathematic symbols and their meanings are shown in Table 3-1. Valid

values for latitude are:

-90°  0

Valid values for longitude are:

-1800 < U < 1800

The formulae described were taken from reference (9).

3.7.1 Scale Factors

The following equations are used to calculate the scale factors for the

projections listed.

3-59



- Table 3-1 Mathematic Symbols
SSYMBOL DESCRIPTION UNITS

E The eccentricity of the earth --
c

ER  Angular distance from point to map center point radians

i An intermediate calculation value --

M Map radius for orthographic projection inches

R Radius of the earth inches

SScale of map at true scale latitude inches/inch

xAbcissa of translated point inches

X r  Range of X values (width of map) inches

X Scale factor in X direction inches
S

YOrdinate of translated point inches

Yr Range of Y values (height of map) inches

Y Scale factor in Y direction inches
s

Longitude of point radians

¢ Longitude at map center point radians

P r  Range of longitude (absolute value of radians
eastmost longitude - westMOst longitude)

Latitude of point radians

P!S Latitude at map center point radians

P C  Co-latitude at point (P/2 - p) radians

.!.. O Co-latitude of center point (P/2 - P radians

,Pr Range of latitude (northmost latitude -southmost latitude) radians

P t True scale latitude radians

SAzimuth angle from point to center radians
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MERCATOR, MILLER. ANJD SINUSOIDAL

[1.0 - E2 Sin2pt]1/2

Cos Pt

x S = R/CiS)

y 5 =  X 5

EQUIRECTANGULAR

x 4r

r

yv.
y ..A.

r

ORTHGRAPH IC

X = MY* Xs

3.7.2 Projection Equations

The following equations are used to calculate the projections listed.

MERCATOR

i = in tan (450 ] + A- • ln 1 - E. sin 1P|

i assumes the sign of p.

Y3iY
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MILLER

x - 11] .x

i 5 In (tan (450 + Li)]
i assumes the sign of P

Y= i • y

EQUIRECTANGULAR

X [ ] s

Y [P- P@] " Y

SISUSOIDAL

x =[-€]•Cos p-XS

Y P Y

ORTHOGRAPHIC

ER = Cos [cos P cos P. + sin pc si p j (11 1 1)

Note: This equation in the CAM documentation is marred by two errors.
This is the correct equation.

Co p o -co E
-

cs
I

sin ER sin p co

cos-i[c- €.->e>s.R1 = 00

F- I - ] <€~ , z 1800 -j



X a sin ER • sin •X3

Y a sin ER • 0 O •s
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1.0 INTRODUCTION

Fortran contains four basic mechanisms for controlling program
flow: CALL/RETURN, IF, DO, and various forms of the GO TO.

Flees is a language extension of Fortran which has additional
control mechanisms. These mechanisms make it easier to write
Fortran by eliminating much of the clerical detail associated with
constructing Fortran programs. Flecs is also easier to read and
comprehend than Fortran.

This manual is intended to be a brief but complete introduction to
Flecs. It is not intended to be a primer on FleCs or structured
programming. The reader is assumed to be a knowledgeable Fortran
programmer.

For programmers to whom transportability of their programs is a
concern, it should be noted that the Flecs translator source code
is in the public domain and is made freely available. The
translator was written with transportability in mind and requires
little effort to move from one machine to another. Those
interested in moving Flees to another machine or in having their
own copy of Flecs should contact the author.

At Oregon, Flees is implemented on both the PDP-1O and the IbM
S/bO. The manner of implementation is that of a preprocessor
which translates Flees programs into Fortran programs. The
resulting Fortran program is then processed in the usual way. The
translator also produces a nicely formatted listing of the Flees
program which graphically presents the control structures used.

The following diagram illustrates the translating process.

, Source | Translator Fortran

Indented To

LFortran
Compiler
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2.0 RETENTION OF FORTRAN FEATURES

The Flecs translator examines each statement in the Flecs program
to see if it is an extended 3tale (a statement valid in Flees
but not in Fortran). If it is recognized as an extended
statement, the translator generates the corresponding Fortran
statements. If, however, the statement is not recognized as an
extended statement, the translator assumes it must be a Fortran
statement and passes it through unaltered. Thus JM ecg system

dos o 2f Fortan gtheus 3, it simply
provides a set of additional statements which may be used. In
particular, GO TOs, arithmetic IFs, CALLs, arithmetic statement
functions, and any other Fortran statements, compiler dependent or
otherwise, may be used in a Flees program.

3.0 CORRELATION OF FLECS AND FORTRAN SOURCES

One difficulty of preprocessor systems like Flecs is that error
messages which come from the Fortran compiler must be related back
to the original Flecs source program. This difficulty is reduced
by allowing the placement of JIMj numbers (not to be confused with
Fortran statement numbers) on FleCs source statements. These line
numbers then appear on the listing and in the Fortran source.
When an error message is produced by either the FleCs translator
or the Fortran compiler, it will include the line number of the
offending Flecs source statement, making it easy to locate on the
listing.

If the programmer chooses not to supply line numbers, the
translator will assign sequential numbers and place them on the
listing and in the Fortran source. Thus, errors from the compiler
may still be related to the Flecs listing.

Details of line numbering are machine dependent and are given in
chapter 10. On most card oriented systems, the line numbers may
be placed in columns 76-80 of each card. Other systems may have
special provisions for line numbers.

The beginning Flecs programmer should discover and make
special note of the details of the mechanism by which Fortran
compiler error messages may be traced back to the Flecs listing on
the system being used.
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4.0 STRUCTURED STATEMENTS

A basic notion of Flecs is that of the sn which
consists of a ontrol oa and its scope. Fortran has two
structured statements, the logical IF and the DO. The following
examples illustrate this terminology:

structured statement

control phrase scope

keyword specification

IF (X.EQ.Y) U=V+W

keyword specification

DO 30 I = 1,N control phrase
A(I) = B(I)+C structured
L(I) = I-K(I) scope statement

30 CONTINUE

Note that each structured statement consists of a control phrase
which controls the execution of a set of one or more statements
called its scope. Also note that each control phrase consists of
a keyword plus some additional information called the
soecification. A statement which does not consist of a control
phrase and a scope is said to be a simLe saen. Examples of'
simple statements are assignment statements, subroutine CALLs,
arithmetic IFs, and GO TOs.

The problem with the Fortran logical IF statement is that its
scope may contain only a single simple statement. This
restriction is eliminated in the case of the DO, but at the cost of
clerical detail (having to stop thinking about the problem while a
statement number is invented). Note also that the IF
specification is enclosed in parentheses while the DO
specification is not.

In Flecs there is a uniform convention for writing control phrases
and indicating their scopes. To write a structured statement, the
keyword is placed on a line beginning in column 7 followed by its
specification enclosed in parentheses. The remainder of the line
is left blank. The statements comprising the scope are placed on
successive lines. The end of the scope is indicated by a FIN
statement. This creates a muilin &s.rucaur atea.
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Examples of multi-line structured statements:

IF (X.EQ.Y)

S T
FIN

DO (I 1,N)LA) = B(I) C
C*C2.1J4-3. i4

FIN

Note: The statement number has been eliminated from the DO
specification since it is no longer necessary, the end of the
loop being specified by the FIN.

Nesting of structured statements is permitted to any depth.

Example of .nested structured statements:

IF (X.EQ.Y)
U z V W

DO (I z 1,N)
A(I) a B(I).C
C z C02.14&-3.I14

R = S+T
FIN.

When the scope of a control phrase consists of a single aW&
statement, it may be placed on the same line as the control phrase
and the FIN may be dispensed with. This creates a pne4la.i

Examples of one-line structured statements:

IF (X.EQ.Y) U =.V+W

DO (I x 1,N) A(M) x B(I)+C

4-7
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Since each control phrase must begin on a new line, it is not
-possible to have a one-line structured statement whose scope

consists of. a structured statement.

Example of invalid construction:

IF (X.EQ.Y) DO (I = 1,N) A(I) =B() C

To achieve the effect desired above, the IF must be written in a
multi-line form.

Example of valid construction:

IF (X.EQ.1)

L O (I =1,W) A(I) = B(I)+C•L_ FIN

In addition to IF and DO, Flees provides several useful structured
statements not available in Fortran. After a brief excursion into
the subject of indentation, we will present these additional
structures.

5.0 INDENTATION, LINES AND THE LISTING

In the examples of multi-line structured statements above, the
statements in the scope were indented and an "L" shaped line was
drawn connecting the'keyword of the control phrase to the matching
FIN. The resulting graphic effect helps to reveal the structure
of the program. The rules for using indentation and FINs are
quite simple and uniform. The control phrase of a multi-line
structured statement always causes indentation of the statements
that follow. Nothing else causes indentation. A level of
indentation (i.e. a scope) is always terminated with a FIN.
Nothing else terminates a level of indentation.

When writing a Flees program on paper the programmer should adopt
the indentation and line drawing conventions shown below. When
preparing a Flees source program in machine readable form,
however, each statement should begin in column 7. When the Flees
translator produces the listing, it will reintroduce the correct
indentation and produce the corresponding lines. If the
programmer attempts to introduce his own indentation with the use
of leading blanks, the program will be translated cQrrectly, but
the resulting listing will be improperly indented.
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Example of indentation:

1. Program as written on paper by programmer.

IF (Y.EQ.Y)

U 
= 

V4.\ADe" (z -I,w)

R=S+rFIN

2. Program as entered into computer.

IF (X.EQ.Y)
U = V W
DO (I I,N)
A(I) = B(I) C
C = C*2.14-3.14
FIN
R a S T
FIN

3. Program as listed by Flecs translator.

IF (X.EQ.Y)
* U = V+W
. DO (I = 1,N)
S A(I) = B(I)+C

• • C = C*2.14-3.14
. ...FIN
. R = S T
:..FIN

The correctly indented listing is a tremendous aid in reading and
working with programs. Except for the dots and spaces used for
indentation, the lines are listed exactly as they appear in the
source program. That is, the internal spacing of columns 7-72 is
preserved. There is seldom any need to refer to a straight
listing of the unindented source.

Comment lines are treated in the following way on the listing to
prevent interruption of the dotted lines indicating scope. A
comment line which contains only blanks in columns 2 through b
will be listed with columns 7 through 72 indented at the then-
current level of indentation as if the line were an executable
statement. If, however, one or more non-blank characters appear
in columns 2 through 6 of a comment card, it will be listed without
indentation. Blank lines may be inserted in the source and will
be treated as empty comments.
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6.0 CONTkOL STRUCTURES

The complete set of control structures provided by Flecs is given
below together with their corresponding flow charts. The
symbol Z is used to indicate a logical expression. The
symbolS is used to indicate a scope of one or more statements.
Some statements, as indicated below, do not have a one-line
construction.

A convenient summary of the information in this chapter may be
found in Appendix A.

6.1 Decision Structures

Decision structures are structured statements which control the
execution of their scopes on the basis of a logical expression or
test.
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6.1.1 IF

Description: The IF statement causes a logical expression to be
evaluated. If' the value is true, the scope is executed once and
control passes to the next statement. If the value is false,
contol passes directly to the next statement without execution of
the scope.

General Form: Flow Chart:

IF (4) S

Examples: M

IF (X.EQ.Y) U = V+W M.E

IF (T.GT.O.AND.S.LT.R)
I 1+E
Z 0.1

... FIN

6.1.2 UNLESS

Description: "UNLESS (C)" is functionally equivalent to
"IF(.NOT.( 4))", but is more convenient in some contexts.

General Form: Flow Chart:

UNLESS ( Z) S

Examples 

E

UNLESS (X.NE.Y) U V+W ME

UNLESS (T.LE.O.OR.S.GE.R)
.1 1+1
* Z 0.1
.. .FIN
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6.1.3 WHEN...ELSE

Description: The WHEN...ELSE statements correspond to the
IF...THEN.•.ELSE statement of Algol, PL/I, Pascal, etc. In FleCs,
beth the WHEN and the ELSE act as structured statements although
only the WHEN has a specification. The ELSE statement must
immediately follow the scope of the WHEN. The specifier of the
WHEN is evaluated and exactly one of the two scopes is executed.
The scope of the WHEN statement is executed if the expression is
true and the scope of the ELSE statement is executed if the
expression is false. In either case, control then passes to the
next statement following the ELSE statement.

General Form: Flow Chart:

WHEN (SZ S,
ELSE Sz

Examples:

WHEN (X.EQ.Y) U = V+W
ELSE U = V-W

WHEN (X.EQ.Y)4z
SU = V+W

T T+1.5
...FIN
ELSE U = V-W

WHEN (X.EQ.Y) U : V+W
ELSE
' U= V-W
. T = T+1.5
... FIN

WHEN (X.EQ.Y)
SU = V+W
• T=T-1.5
...FIN
ELSE
. U = V-W
. T z T..5
... FIN

NOTE: WHEN and ELSE always come as a pair of statements, never
separately. Either the WHEN or the ELSE or both may assume the
multi-line form. ELSE is considered to be a control phrase, hence
cannot be placed on the same line as the WHEN. Thus
"WHEN ( Sj ELSE $ is = valid.
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6.1.4 CONDITIONAL

Description: The CONDITIONAL statement is based on the LISP
conditional. A list of logical expressions is evaluated one by
one until the first expression to be true is encountered. The
scope corresponding to that expression is executed, and control
then passes to the first statement following the CONDITIONAL. If
all expressions are false, no scope is executed. (See, however,
the note about OTHERWISE below.)

General Form: Flow Chart:

CONDITIONAL
. (4) S
. ccI) Sz

. (.LE105 U= -

... FIN
Examples:

tALSE

CONDITIONAL
. (X.LT.-5.O) U = U4.W
. (X.LE.1.O) U =U+eW.Z

(X.LE.10.5) U = U-Z>M

CONDITIONAL FALSE
• (A.EQ.B) Z= 1.0
. (A.LE.C)
" • Y z 2.0
• . Z 3.4F ,* . ...FIN

(A.GT.C.AND.A.L ,B) Z 6.2
. (OTHERWISE) Z = 0.0
...FIN

. Notes: The CONDITIONAL itself does not possess a one-line form.
However, each "(C) j " is treated as a structured statement and
may be in one-line or multi-line form.

The reserved word OTHERWISE represents a catchall condition. That
is, "(OTHERWISE) $ " is equivalent to "(.TRUE.) St" in a
CONDITIONAL statement.
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6.1.5 SELECT

Description: The SELECT statement is similar to the CONDITIONAL
but is more specialized. It allows an expression to be tested for
equality to each expression in a list of expressions. When the
first matching expression is encountered, a corresponding scope is
executed and the SEL CT statement terminates. In the description
below,C ,C ,.., - represent arbitrary but compatible
expressions. Any type of expression (integer, real, complex,...)
is allowed as long as the underlying Fortran system allows'such
expressions to be compared with an .EQ. or .NE. operator.

General Form: Flow Chart:

SELECT (C)
(el) TU*(62) S~t

* , S

• (A:A)

• . PC:=PC I.. .. FIN --
. (SKIP) PC = PC+2
• (STOP) CALL STOPCD

.FIN

Notes: As in the case of CONDITIONAL, at most one of the will
be executed.

* The catchall OTHERWISE may also be used in a SELECT statement.
Thus "(OTHERWISE) 5n " is equivalent to "(e) Sn " within a
"SELECT (C)" statement.

The expression IC is reevaluated for each comparison in the list,
thus lengthy, time consuming, or irreproducable expressions should
be precomputed, assigned to a variable, and the variable used in
the specification portion of the SELECT statement.
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6.2 LOOP Structures

The structured statements described below all have a scope which
is executed a variable number of times depending on specified
conditions.

Of the five loops presented, the most useful are the DO, WHILE, and
REPEAT UNTIL loops. To avoid confusion, the REPEAT WHILE and
UNTIL loops should be ignored initially.

6.2.1 DO

Description: The Fleas DO loop is functionally identical to the
Fortran DO loop. The only differences are syntactic. In the
Flecs DO loop, the statement number is omitted from the DO
statement, the incrementation parameters are enclosed in
parenthesis, and the scope is indicated by either the one line or
multi-line convention. Since the semantics of the Fortran DO
statement vary from one Fortran compiler to another, a flowchart
cannot be given. The symbol X represents any legal
incrementation specification.

General Form: Equivalent Fortran:

Do() DO 30 Z
S

30 CONTINUE

Examples:

DO (I x 1,N) A(I) 0.0

DO (J x 3,K,3)
4 B(J) a B(J-1)*B(J-2)

C(J) a SIN(B(J))
...FIN
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6.2.2 WHILE

Description: The WHILE loop causes its scope to be repeatedly
executed while a specified condition is true. The condition is
checked prior to the first execution of the scope, thus if the
condition is initially false the scope will not be executed at
all.

General Form: Flow Chart:

WHILE ( L) S

Examples: 
,ALS

WHILE (X.LT.A(I)) I =I+1 TWAE

WHILE (P.NE.O)
• VAL(P) = VAL(P)+I S
. P = LINK(P)

.FIN

6.2.3 REPEAT WHILE

Description: By using the REPEAT verb, the test can be logically
moved to the end of the loop. The REPEAT WHILE loop causes its
scope to be repeatedly executed while a specified condition
remains true. The condition is not checked until after the first
execution of the scope. Thus the scope will always be executed at
least once and the condition indicates under what conditions the
scope is to be reeted. Note: "REPEAT WHILECC)" is functionally
equivalent to "REPEAT UNTIL(.NOT.CC))".

General Form: Flow Chart:

REPEAT WHILE () S

Examples: S
REPEAT WHILE(N.EQ.M(I)) I I+1

REPEAT WHILE (LINK(Q).NE.O) TRUE
R =LINKCQ)L

• LINK(Q) P
. P Q FALSE
• Q R
...FIN
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6.2.4 UNTIL

Description: The UNTIL loop causes its scope to be repeatedly
executed until a specified condition becomes true. The condition
is checked prior to the first execution of the scope, thus if the
condition is initially true, the scope will not be executed at
all. Note that "UNTIL (C)" is functionally equivalent to "WHILE
(.NOT.(ZW))".

General Form: Flow Chart:

UNTIL ()S

Examples:

UNTIL (XEQA(I)) I I+I FALSE

UNTIL (P.EQ.) 
.tAS

. VAL(P).= VAL(P) 1 3

. P z LINK(P)
...FIN

6.2.5. REPEAT UNTIL

Description: By using the REPEAT verb, the test can be logically
moved to the end of the loop. The REPEAT UNTIL loop causes its
scope to be repeatedly executed until a specified condition
becomes true. The condition is not checked until after the first
execution of the scope. Thus the scope will always be executed at
least once and the condition indicates under what conditions the
r of the scope is to be terminated.

General Form: Flow Chart:

REPET UNTIL()S

Examples:s

REPEAT UNTIL (N.EQ.M(I)) I 1 I1

REPEAT UNTIL (LINK(Q).EQ.O)
Rt a LINK(Q J >FAJLSSE
LINK(Q) = P

* P:Q. Q M R
Q Q R TRUE

... FIN
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7.0 Internal Procedures

In Flecs a sequence of statements may be declared an internal
p and given a name. The procedure may then be invoked
from any point in the program by simply giving its name.

P r names may be any string of letters, digits, and hyphens
(i.e. minus signs) beginning with a letter and containing at
least one hyphen. Internal blanks are not allowed. The only
restriction on the length of a name is that it may. not be continued
onto a second line.

Examples of valid internal procedure names:

INITIALIZE-ARRAYS
GIVE-WARNING
SORT-INTO-DESCENDING-ORDER
INITIATE-PHASE-3

A procedure d consists of' the keyword "TO" followed by
the procedure name and its scope. The set of statements
comprising the procedure is called its scope. If the scope
consists of a single simple statement it may be placed on the same
line as the "TO" and procedure name, otherwise the statements of
the scope are placed on the following lines and terminated with a
FIN statement. These rules are analogous with the rules for
forming the scope of a structured statement.

General Form of procedure declaration:

TO procedure-name

Examples of procedure declarations:

TO HESET-POINTER P = 0

TO DO-NOTHING CONTINUE

TO SUMMARIZE-FILE
* INITIALIZE-SUMMARY

OPEN-FILE
REPEAT UNTIL (EOF)
.. ATTEMPT-TO-READ-RECORD

, . WHEN (EOF) CLOSE-FILE
. • ELSE UPDATE-SUMMARY

:...FIN
• OUTPUT-SUMMARY
...FIN
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An i 2Iedure rf1eJsrsn is a procedure name appearing
where an executable statement would be expectld. In fact an
internal procedure reference & an executable simpie statement and
thus may be used in the scope of a structured statement as in the
last example above. When control reaches a procedure reference
during execution of a Flecs program, a return address is saved and
control is transferred to the first statement in the scope of the
procedure. When control reaches the end of the scope, control is
transferred back to the statement logically following the
procedure reference.

A typical Flees program or subprogram consists of a sequence of
Fortran declarations: (e.g. INTEGER, DIMENSION, COMMON, etc.)
followed by a sequence of executable statements called the A= of
the program followed by the Flees internal procedure declarations,
if any, and finally the END statement.

Here is a complete (but uninteresting) Flees program which
illustrates the placement of the procedure declarations.

00010 C INTERACTIVE PROGRAM FOR PDP-1O TO COMPUTE X**2.
00020 C ZERO IS USED AS A SENTINEL VALUE TO TERMINATE EXECUTION.
00030
00040 REAL X,XSQ
00050 REPEAT UNTIL (X.EQ.0)
00060 • GET-A-VALUE-OF-X
00070 • IF (X.NE.0)
00080 . . COMPUTE-hESULT
00090 • . TYPE-RESULT
00100 .... FIN
00110 ...FIN
00120 CALL EXIT

00130 TO GET-A-VALUE-OF-X
00140 . TYPE 10
00150 10 . FORMAT (' X
00160 . ACCEPT 20,X
00170 20 . FORMAT (F)
00180 .. FIN

00190 TO COMPUTE-RESULT XSQ a X*X

-----------------------------------------

00200 TO TYPE-RESULT
00210 . TYPE 30t XSQ
00220 30 . FORMAT( X-SQUARED = ,F7.2)
00230 ...FIN
00240 END
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Notes concerning internal procedures:

1. All internal procedure declarations must be placed at the
end of the program Just prior to the END statement. The
appearance of the first "TO" statement terminates the
body of the program. The translator expects to see
nothing but procedure declarations from that point on.

2. The order of the declarations is not important.
Alphabetical by name is an excellent order for programs
with a large number of procedures.

3. Procedure declaration3 may not be nested. In other
words, the scope of a procedure may not contain a
procedure declaration. It may of course contain
executable procedure references.

4. Any procedure may contain references to any other
procedures (excluding itself).

5. Dynamic recursion of procedure referencing is not
permitted.

6. All program variables within a main or subprogram are
global and are accessable to the statements in all
procedures declared within that same main or sub
program.

7. There is no formal mechanism for defining or passing
parameters to an internal procedure. When parameter
passing is needed, the Fortran function or subroutine

subprogram mechanism may be used or the programmer may
invent his own parameter passing methods using the global
nature of variables over internal procedures.

8. The Flecs translator separates procedure declarations on
the listing by dashed lines as shown in the preceding
example.
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b.0 Restrictions and Notes

If Flees were implemented by a nice intelligent compiler this
section would be much shorter. Currently, however, Flecs is
implemented by a sturdy but naive translator. Thus the Flees
programmer must observe the following restrictions.

1. Flecs must invent many statement numbers in creating the
Fortran program. It does so by beginning with a large number
(usually 99999) and generating successively smaller numbers as
it needs them. Do not use a number which will be generated by
the translator. A good rule of thumb is to avoid using
dgit~ statemfl numeArs,

2. The Flecs translator must generate integer variable names. It
does so by using names of the form "Innnnn" when nnnnn is a 5
digit number related to a generated statement number. Donogg&s vai lg 2L = f.g= Innnft =lr avoid gau31ng them to be

l dother = N E. For example the declaration
"IMPLICIT REAL (A-Z)" leads to trouble. Try "IMPLICIT REAL (A-
H, J-Z)" instead.

3. The translator does not recognize continuation lines in the
source file. Thus Fortran statements may be continued since
the statement and its continuations will be passed through the
translator without alteration. (See chapter 2.) However, a
extended Flees s e2t l which Criresa oraa
contnue. The reasons one might wish to continue a Flecs
statement are 1) It is a structured statement or procedure
declaration with a one statement scope too long to fit on a
line, or 2) it contains an excessively long specification
portion or 3) both of the above. Problem 1) can be avoided by
going to the multi-line form. Frequently problem 2) can be
avoided when the specification is an expression (logical or
otherwise) by assigning the expression to a variable in a
preceding statement and then using the variable as the
specification.

4. Blanks ar Mnnnl s temen& don't
SJ= in A= pla like the middle of identifiers or key
words and do use them to separate distinct words like HEPEAT
and UNTIL.

5. Let Flecs indent the listing. Start a1l gn co2.
and the listing will always reveal the true structure of the
program. (as understood by the translator, of course).

6. As far as the translator is concerned, FORMAT statements are
executable Fortran statements since it doesn't recognize them
as extended Flecs statements. Thus, jX place FORMATgtatements where &a excta Fortran sttmn would be
aea . Don t put them between the end of a WHEN
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statement and the beginning of an ELSE statement. Lon't put

them between procedure declarations.

Incorrect Examples: Corrected Examples:

WHEN (FLAG) WRITE(3,30) WHEN (FLAG)
30 FORMAT(7H TITLE:) . WRITE(3,30)

ELSE LINE = LINE+1 30 . FORMAT(7H TITLE:)
...FIN
ELSE LINE = LINE 1

TO WRITE-HEADER TO WRITE-HEADER
• PAGE = PAGE+1 . PAGE = PAGE+1
. WRITE(3,40) H,PAGE . WRITE(3,40) H,PAGE
...FIN 40 . FORMAT(70A1,I3)

40 FORMAT (70AI,I3) ...FIN

7. The translator, being simple-minded, recognizes extended Flecs
statements by the process of scanning the first identifier on
the line. If the identifier is one of the Flees keywords IF,
WHEN, UNLESS, FIN, etc., the line is assumed to be a Flecs
statement and is treated as such. Thus, Ith [lees keywords

= resrv ae d y n D91 D e As variale naMes. In case
of necessity, a variable name, say WHEN, may be slipped past
the translator by embedding a blank within it. Thus "WH EN"
will look like "WH" followed by "EN" to the translator which
is blank sensitive, but like "WHEN" to the compiler which
ignores blanks.

8. In scanning a parenthesized specification, the translator
scans from left to right to find the parenthesis which matches
the initial left parenthesis of the specification. The
translator, however, is ignorant of Fortran syntax including
the concept of Hollerith constants and will treat Hollerith
parenthesis as syntactic parenthesis. Thus, avoid klAcinst

soecifications. If necessary, assign such constants to a
variable, using a DATA or assignment statement, and place the
variable in the specification.

Incorrect Example: Corrected Example:

IF (J.EQ."(') LP =
IF(J.EQ.LP)

9. The Flecs translator will not supply the statements necessary
to cause appropriate termination of main and sub-programs.
Thus JA Is IQ include apro l RETURN, STO

dlaration.. Failure to do so will result in control entering
the scope of the first procedure after leaving the body of the
program. Do not place such statements between the procedure

*declarations and the END statement.
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9.0 Errors

This section provides a framework for understanding the error
handling mechanisms of version 22 of the Flees Translator. The
system described below is at an early point in evolution, but has
proven to be quite workable.

The Flees translator examines a Flees program on a line by line
basis. As each line is encountered it is first subjected to a
limited syntax analysis followed by a context analysis. Errors
may be detected during either of these analysis. It is also
possible for errors to go undetected by the translator.

9.1 Syntax Errors

When a syntax error is detected by the translator, it D2n.t§ the
satement. On the Flees listing the line number of the statement
is overprinted with -'s to indicate that the statement has been
ignored. The nature of the syntax error is given in a message on
the following line.

The fact that a statement has been ignored may, of course, cause
some context errors in later statements. For example the control
phrase "WHEN (X(I).LT.(3+4)" has a missing right parenthesis.
This statement will be ignored, causing as a minimum the following
ELSE to be out of context. The programmer should of course be
aware of such effects. More is said about them in the next
section.

9.2 Context Errors

If a statement successfully passes the syntax analysis, it is
checked to see if it is in the appropriate context within the
program. For example an ELSE must appear following a WHEN and
nowhere else. If an ELSE does not appear at the appropriate point
or if it appears at some other point, then a context error has
occurred. A frequent source of context errors in the initial
stages of development of a program comes from miscounting the
number of FIN's needed at some point in the program.

With the exception of excess FIN's which do not match any

preceding control phrase and are ignored (as indicated by
overprining the line number), all context errors are treated with
a uniform strategy. When an out-of-context source statement is
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encountered, the translator generates a "STATEMENT(S) NEEDED"
message. It then invents and processes a sequence of statements
which, if they had been included at that point in the program,
would have placed the original source statement in a correct
context. A message is given for each such statement invented.
The original source statement is then processed in the newly
created context.

By inventing statements the translator is not trying to patch up
the program so that it will run correctly, it is simply trying to
adjust the local context so that the original source statement and
the statements which follow will be acceptable on a context basis.
As in the case of context errors generated by ignoring a
syntactically incorrect statement, such an adjustment of context
frequently causes further context errors later on. This is called
groagaigo 2 context errr.

One nice feature of the context adjustment strategy is that
context errors cannot propagate past a recognizable procedure
declaration. This is because the "TO" declaration is in context
only at indentation level 0. Thus to place it in context, the
translator must invent enough statements to terminate all open
control structures which preceed the "TO". The programmer who
modularizes his program into a collection of relatively short
internal procedures, limits the potential for propagation of
context errors.

9.3 Undetected Errors

The FleCs translator is ignorant of most details of Fortran
syntax. Thus most Fortran syntax errors will be detected by the
Fortran compiler not the FleCs translator. In addition there are
two major classes of Flecs errors which will be caught by the
compiler not the translator.

The first class of undetected errors involve misspelled Flecs
keywords. A misspelled keyword will not be recognized by the
translator. The line on which it occurs will be assumed to be a
Fortran statement and will be passed unaltered to the compiler
which will no doubt object to it. For example a common error is to
spell UNTIL with two L's. Such statements are passed to the
compiler, which then produces an error message. The fact that an

intended control phrase was not recognized frequently causes a

later context error since a level of indentation will not be
triggered.

The second class of undetected errors involves unbalanced
parentheses. (See also note 8 in section 8.0). When scanning a
parenthesized specification, the translator is looking for a
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matching right parerthesis. If the matching parenthesis is
encountered before the end of' the line the remainder of the line is
scanned. If the remainder is blank or consists of a recognizable
internal procedure reference, all is well. If neither of the
above two cases hold, the remainder of the line is assumed
(without checking) to be a simple Fortran statement which is
passed to the Compiler. Of course, this assumption may be wrong.
thus the statement

"WHEN (X.LT.A(I)+Z)) X = 0"

is broken into

keyword "WHEN"
specification "(X.LT.A(I)+Z)"
Fortran statement ") X = (

Needless to say the compiler will object to ") X O" as a
statement.

Programmers on batch oriente systems have less difficulty with
undetected errors due to the practice of running the program
through both the translator and the compiler each time a run is
submitted. The compiler errors usually point out any errors
undetected by the translator.

Programmers on timesharing systems tend to have a bit more
difficulty since an undetected error in one line may trigger a
context error in a much later line. Noticing the context error,
the programmer does not proceed with compilation and hence is not
warned by the compiler of. th; genuine cause of the error. One
indication of the true source of the error may be an indentation
failure at the corresponding point in the listing.

9.4 Other Errors

The translator detects a variety of other errors such as multiply
defined, or undefined procedure references. The error messages
are self-explanatory. (Really and truly!)
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10.0 Procedure for use

The following subsections describe the procedures for using the
Flees translator on various machines at the University of Oregon.

10.1 On the PDP-10

10.1.1 Source Preparation

Prepare a Flecs source file with any name of your choosing and an
extension of ".FLX". The translator will accept either
line-numbered (SOS, LINED, EDITS) or non-line-numbered (TECO)
files. The advantage of line numbered files is that the
translator and compiler error messages may be related directly to
the source file without reference to a listing. As with Fortran
the "tab to column 7" convention may be used.

10.1.2 Compile Commands

The Compile class commands (COMPILE, EXECUTE, LOAD, etc.)
recognize the extension .FLX and will invoke the Flecs translator
when necessary. When invoked, the Flecs translator will send any
error messages to the TTY and will normally produce an .F4 file.
The /NOBIN switch will suppress production of the .F4 file and
should only be used with the "COMPILE" command. The /LIST switch
will cause the translator to produce an indented and formatted
source listing with extension .LST which may then be TYPE or
PRINT ed.

Examples: (Assume files A.FLX, B.F4, C.MAC).

•EX A, B, C Produce A.F4 using Flecs, then compile A.F4
and B.F4, then assemble C.MAC, then load and
execute A.REL, B.REL, and C.REL.

.COII/NOBIN/LIST A Produce an indented listing of A.FLX but
don't produce A.F4.

.COM A Run A.FLX through Flecs, then A.F4 through
Fortran.

ilote 1: Uninvoked internal procedures and too many or too few
"FIN"'s preceeding a TO or END statement are considered minor
errors by Flecs. All others are considered major. If any

* major errors are detected by the translator, it will abort any
following compilation, loading, and execution.
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iJote 2: (COMPIL invokes the Flecs translator whenever the ".F4"
file is missing or older than the ".FLX" file., regardless of
the existance or time of a ".REL" file. If you wish to save
disk space by deleting the .F4 file, you must then use .EX
A.REL or ,EX/REL A to avoid retranslation and recompilation.

Note 3: If COMPIL finds an .F4 file which is newer than the .FLX
file it assumes (without looking) that the .REL file also
exists. LINK will be unhappy if this is not true. To create
a new .REL file without retranslation, do .EX A.F4.

10.1.3 Explicit Invocation

Fleas may be invoked explicitely by ".R FLECS". Flecs will
prompt with a ,', to which you may respond with any of the
command formats below:

COMMAND ACTION-

<CH> TERMINATE EXECUTION
C F4 LST ERR
=C ERR
,:C ERR

A =C F4 ERR
A, =C F4 ERR

B=C LST ERR
A,B=C F4 LST ERR

where blanks may be used freely and
<CR> represents a carriage return
A,B,C represent file specifications (see below).
F4. means an ".F4" file will be produced
LST means an ".LST" file will be produced.
ERR means error messages will be sent to the TTY.

File Specification Format

DEV:FNAME.EXT[PPN]

SYMBOL MEANING DEFAULT IF OMITTED

DEV: device DSK:
FNAME file name must be specified in all cases except

command format "C" where the name given
to the ".FLX" file is also used for the
".F4", and ".LST" files.

.EXT extension ".F4" for A above
".LST" for B above".FLX" for C above

£PPN] proj,prog # same as job using Flecs,.

Note: the Flecs translator will run approximately 20% faster for
each output file omitted.
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10.2 On the IBM /360

On the IBM S/3bO there are two ways of accessing Flees which have
come to be known as WATFLECS and Standard Flees. WATFLECS is a
specially adapted version of the Flees translator which processes
batches of short jobs using the WATFIV compiler and is used
primarily in connection with Computer Science classes. Standard
Flees is a stand alone Flecs translator used for larger production
programs, usually in conjunction with the level G Fortran
compiler. Catalogued procedures which are analogous to those for
Fortran(U) exist for using Standard Flees. WATFLECS is accessed
through a special submission process. The same Flecs translation
logic is used for both systems so the only language differences
are those due to the incompatibilities of the corresponding
Fortrans.

10.2.1 WATFLECS

The procedure for preparing and submitting a program under

WATFLLCS is almost identical to the procedure for submitting a job
under WATFIV. The deck set up is shown below

$JUB 100557/yourname,any-desired-watfiv-parameters,KP=29

Flees source program

IETH

data cards (if any)

Steps in submitting a WATFLECS job:

1. Prepare the Flecs program or programs and data cards on an 029
keypunch. Although WATFIV will, the WATFLECS translator will
not accept cards punched on an 026 keypunch.

2. Prepare a solid 2 inkS Jk carl a% shown above.
a) The characters "$JOL" should begin in column 1.
b) The account number 100557 should begin in column 7,
followed by a "/".
c) Fill in your name followed by a comma.
6) Supply any desired WATFIV parameters. Note: Lhe WATFLV
part of' the run will be limited to 6 seconds.
e) Supply the required "KPz29" parameter.
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3. Place the Flees program behind the $JUb card.

4. Place a card with "$FTRY" beginning in column 1 behind the
program. TJ Ae£TIA= M= a lw e ay A orgsent wr
a2 ,i_ art an & ura.

5. Place any data cards behind the $ENTRY card.

6. Place a rubber band around the deck and submit to program
reception. The receptionist will place a numbered comment
card in the program and give a duplicate card as a receipt.

7. Check the latest WATFLECS job number posted on the blackboard
at program reception. As soon as the posted number is greater
than or equal to the receipt number, pick up the deck and
listings by presenting the receipt card.

Notes on preparing a WATFLECS program:

1. An I kepuc a Dused..

2. WATFIV does not follow the ANSI standard for Fortran in that
it does not allow a Fortran program to jump out of the scope of
a DO and later jump back in. Since Flees internal procedure
calls are implemented by U0 TO's, 11 11 n= p .j&

rfrnc e aag intenal procedre thi~Jn JIM scopet 2L a I 1
wen uiiTn& C. The other loop structures may be used to
simulate a DO loop, however.

Te Irmite~~ A, WA E MAa prog.ram AX placng a Z= sttmn
ahead 2 first i procedure declaration.

4. The following unit numbers are available in WAT'LECS.

Punit
1 card input (from $L'Tht cards)
2 undefined
3 printed output
4-7 scratch disk (read/write)
6-10 class input data sets (read only)

5. The various "$" cards which control the listing of a WATFIV
program may be included in the program but will be ignored by
the current WATFLECS system.

6. The user may wish to employ the NOWARN and NOXTka WATFIV-
parameters since Flees generated Fortran triggers a lot of'
warnings and extensions.
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10.2.2 Standard Flecs

A cataloged JCL procedure exists for using the Flecs translator as
a 3tand alone program. In addition chtaloged procedures exist for
running Flec:s followed by Fortran (G).

U set tZor =~i JI rnlt

The translator requires three data sets with the following bi)
names.

LIST is the output data set containing the Flecs listing.

FOhTUUT is the output data set containing the Fortran source
proQuced by the translator.

SYSI14 is the input data set containing the Flecs source.

The UCB information for these data sets is given below. It is
fixed by and contained in the program hence need not be specified
in the JUL.

L10"T iCb=(hUIM=FA,bLKSIZL=13')
FUHTuUT uCbz (HtCFK= F, hLKSIE=60)

SY IU V14 UCb=(1(EGFF1F,bLXIZk;bO)

* -The cataloged procedure FLECS is a one step procedure which runs
the Flecs translator. The user must supply the SYSIN data set.
Default DD statements in the procedure send LIST to the printer
and FURTOUT to a dummy data set. If desired, these DD statements
may be overridden as illustrated in the examples below.

Example: Ubtaining a printed Fleas listing and ignoring the
r'ortran source produced.

// jobname JOB accounting information
// stepname hXEc FLECS
,/ SYSIN DD 0

Vlecs source program
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Example: Ubtaining a printed version of both the Flecs listing and
the Fortran source.

// jobname JOB accounting information
// stepname EXEC FLCS
// FORTOUT DD SYSUUTzA
// SYSIN DD

Flecs source program

/*

Example: Obtaining a printed version of the 'lecs listing and
passing the Fortran source to the Fortran(h) compiler for
compilation- only. (This example illustrates the general method of
passing the Fortran source on to a subsequent step and suppressing
the Fortran listing.)

I/ jobname JOB accounting information
// stepnamel EXEC FLECS
// FORTOUT DD DSAiE=&TEMP,DISP=(1iEW,PASS),
II// UNIT=SYSDA,SPAC=(CYL,(1,1))
// SYSIN DU

Flecs source

I/ stepname2 EXEC FOhTHC,PARM.FURT='NOSOUHCE'
// FORT.SYSIN DD DS14AHE=&TEP,DISPf(OLD,D LETE)

Usn = tanlato wit Forta IL
Several cataloged procedures have been established which simplify
the process of using Flecs together with Fortran (G). The
procedure names are given below together with the Fortran
procedures to which they correspond.

FLECSC FOk(TGC
SFLECSCL FORTGCL

FLECSCLG FOHTGCLG
FLECSGO FORTGO

' The reader is assumed to be familiar with the "FOQTU" procedures.
* The Flecs procedures have been derived from the FURTG procedures

by adding an initial step named FLECS which runs the Flees
translator and which passes the FORTOUT data set to the following
step. Since error messages from the Fortran compiler will contain
the line number of the original Flecs source statement, the
programmer will have little occasion to use the source listing
produced by the Fortran compiler. For this reason the source
listing from the Fortran compiler has been suppressed by including
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a i'4LJZ&iUHi1" parameter for the Fortran compiler.

Example: Translating, compiling, linkage editing and executing a
Flees program with previously compiled object decks and data.

// jobname JOB accounting information
// stepname EXEC FLECSCLG
// FLECS.SYSIN DD

ilecs source program

// LKLD.SYS1N DD)

Previously compiled or assembled object decks

// UU.SYSIN 1A)

input data

Note: To obtain \he source listing from the Fortran compiler,
replace the "FLXiC 'rd above with the following:

/1 stepname EXEC FL&CSCLG,PARM.FORTz'SOURCE"

In general, a FleCs run using one of the Fles procedures is
identical to a Fortran(G) run using the corresponding FOKTU
procedures with the following changes:

1. Change the procedure name from FORTGxxx to FLEC3xxx

(exception FOhTGO becomes FLECSGO)

2. Change the SYSIN DD card from FORT.SYSIN to FLECS.SYSIN.

3. If desired, override the suppression of the source
listing by including PARN.FHTz SOURCE' on the EXEC card
as described above.
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Appendix A: Flecs Summary Sh~eet

IF (C) S IiIES() S WHEO (,C 51
ELSE S1

£ TRUE FALSE Y

FALSE TRUE

FALS

CNDITIONAL SELECT (-C

(Cu) S, (c, ) Sg

.. FN.. FNCARRY-OUr-ACTION I
TO CARRY-OUT-ACTION

RUEP
TRU TUENOTE: PLACE A PETRN, STOP. on

S2CALL EXIT STATEmT MAD
PALS!~ FtALS OF THE FIRST TO STATEMENT.

NOTE: OTHERWISE CAN at USED AS
A CATCKAU. CONDITION OR

TRU UKEXPUESSIO iN CONDITIONAL
s~AND SELECT SuTATNs.

FALSELEGEND: AC -LOGICAL. EXPRESS On
$ - STATEMENT(S)e- EXPRESSION

F~~0 O PC!PCATION

MU REP IrNTIL (C) S RPT WHILE (,C S UNTIL (L S WfHILE (c) S

S STRUE CFALSE
ALSE TRUE

FALSE 
TRSUE

TRIiC FALSE
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This duplicate Flees Summary Sheet may be removed from the manual.

IF (C) S UILESS (C) S WHEN (C) S,
ELSE St~

TRUJE ,FALSE~
1.. ___TRUE

TALSE <TALE RUES
F A U E I M E 0F A L S E

5z
CC? DITIONAL SELECT()

( (4) S, (el) S,

* ().Sn(CM) 5x( CARRY-OUT-ACTION

* ;.FN ... IN (TO CARRY-OIJT-ACIONS

TM TUE OTE: PLACE A PETURII. STOP, ow
< ~ Z ~ l CALL EXIT sTATEMENT AmEA

FLEFtALSE OF THE FIRST TO STATEMENT.

NOTE: OTHERWISE CANi sE usua As
A CATCHALL. CONDITION OR

TRUETRUEEXPRESSION IN CONITIONAL

Sn ~AND SELECT STA TENMENTS.

LFAU PJLSELEGEND: £4 - LOGICAL EXPRESSION
5 - STATEMENT(S)
C- EXPRESSION

Z - DO SPECIFICATION

REPEAT UNTIL(C S REMET WHILE (4) SUNTIL (.C) S WHILE (ZC S

STRUE FALSE

FALSE TRUE

C FALSE TRUESS

*~ ARft FASE
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APV'IIblX b: Available Documentation Concerning Fleas
(As of vecember 1974.)

Lseyer, T., F'lees Users Manual (University of regon Ldition)

Contains a concise description of the Fleas extension of
F'ortran and of the details necessary to running a Flecs
program on the PDP-1U or the IBi S/360 at Oregon.

Beyer, T., Fleas: System Modification Guide

Contains information of interest to anyone who wishes to
install or adapt the Flees system to a new machine or
operating system. Also of interest to those who wish to
improve the efficiency of the system by rewriting portions of
the system in assembly language.
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